A. Definisi Persamaan Kuadrat
Persamaan kuadrat adalah persamaan polinomial (suku banyak) variabel 1 yang memiliki pangkat tertinggi dua. Ingat, ya, pangkat tertingginya dua! Jadi, kalau kamu nyariin pangkat tiga di persamaan kuadrat tidak akan ada.
ax2 + bx + c = 0
Dengan a, b, c ∈ R dan a ≠ 0
Keterangan:
x = variabel
a = koefisien dari x2
b = koefisien dari x
c = konstanta
B. Cara Menyelesaikan Persamaan Kuadrat
Ada tiga cara untuk menyelesaikan persamaan kuadrat, yaitu dengan menggunakan faktorisasi, kuadrat sempurna, dan rumus kuadratik atau biasa disebut juga sebagai rumus ABC. Kita bahas satu per satu, ya!
1. Faktorisasi
Faktorisasi atau pemfaktoran merupakan cara mencari penyelesaian dari persamaan kuadrat, dengan cara mencari nilai yang jika dikalikan, maka akan menghasilkan nilai lain. Ada tiga bentuk persamaan kuadrat dengan faktorisasi yang berbeda, yakni seperti berikut:
No. | Persamaan Kuadrat | Faktorisasi |
1 | x2 + 2xy + y2 = 0 | (x + y)2 = 0 |
2 | x2 − 2xy + y2 = 0 | (x − y)2 = 0 |
3 | x2 − y2 = 0 | (x + y)(x − y) = 0 |
Dengan x = variabel dan y = konstanta
Contoh Soal Faktorisasi
Selesaikan persamaan kuadrat berikut dengan cara faktorisasi 5x2 + 13x + 6 = 0!
Jawab:
5x2 + 13x + 6 = 0
5x2 + 10x + 3x + 6 = 0
5x(x + 2) + 3(x + 2) = 0
(5x + 3)(x + 2) = 0
5x = −3
x = atau x = −2
Jadi, penyelesaiannya adalah x = atau x = −2.
Lanjuuut, ke pembahasan cara kedua, yaitu kuadrat sempurna.
2. Kuadrat Sempurna
Kuadrat sempurna adalah cara untuk menyelesaikan persamaan kuadrat dengan melengkapkan kuadratnya sehingga menjadi sempurna. Bentuk persamaan kuadrat sempurna merupakan bentuk persamaan yang menghasilkan bilangan rasional. Penyelesaian persamaan kuadrat dengan kuadrat sempurna menggunakan rumus berikut:
(x + p)2 = x2 + 2px + p2
Dari bentuk tersebut, kamu bisa ubah menjadi bentuk persamaan dalam
(x + p)2 = q
Penyelesaian:
(x + p)2 = q
x + p = ± √q
x = −p ± √q
Contoh Soal Kuadrat Sempurna
Lengkapi bentuk kuadrat sempurna berikut ini x2 + 6x + 5 = 0!
Jawab:
x2 + 6x + 5 = 0
Ubah menjadi x2 + 6x = −5
Tambahkan satu angka di ruas kiri dan kanan agar menjadi kuadrat sempurna. Penambahan angka ini diambil dari separuh angka koefisien dari x atau separuhnya 6 yang dikuadratkan, yakni 32 = 9. Tambahkan angka 9 di ruas kiri dan kanan, sehingga persamaannya menjadi:
x2 + 6x + 9 = −5 + 9
x2 + 6x + 9 = 4
(x + 3)2 = 4
(x + 3) = √4
x + 3 = ± 2
a. Untuk x + 3 = 2
x = 2 − 3
x = −1
b. Untuk x + 3 = −2
x = −2 − 3
x = −5
Jadi, penyelesaiannya adalah x = −1 atau x = −5.
3. Rumus Kuadratik
Selain menggunakan faktorisasi dan melengkapi kuadrat sempurna, persamaan kuadrat juga bisa diselesaikan dengan menggunakan rumus kuadratik atau biasa dikenal dengan rumus ABC. Rumus kuadratik atau rumus ABC bisa kamu lihat pada gambar berikut.
Contoh Soal Rumus Kuadratik
Selesaikan persamaan kuadrat x2 + 4x − 12 = 0 menggunakan rumus kuadratik (rumus ABC)!
Jawab:
x2 + 4x − 12 = 0
a = 1, b = 4, c = −12
Jadi, penyelesaiannya adalah x = 2 atau x = −6.
Bagaimana mudah bukan ? jika ada yang belum mengerti
silahkan tuliskan pada komentar dibawah ini 😊😊
Tidak ada komentar:
Posting Komentar